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Abstract. Using the periodic solutions of the non-linear Poisson-Boltzmann equation it is 
shown that in a many-particle Coulomb system a periodic localisation of charges may 
occur. The value of the charge density at which localisation commences is found. This 
density and the spacing of the localised charges are shown to be characteristic properties 
of the system under investigation. Their values characterise the self-organisation of the 
system. The results depend on the non-linearity of the Poisson-Boltzmann equation and 
are not found if the linearised form is used. 

In this paper we will show that the non-linear Poisson-Boltzmann equation (NPBE)  

leads to some new physical effects. The NPBE describes classical Coulomb systems 
and is obtained by the combination of two basic physical laws-the Poisson equation 
and the Boltzmann energy distribution (together with an assumption that the statistical 
mechanics of the system can be treated via a potential of mean-force type method) 
(Debye and Huckel 1923). Because the basic elements of this theoretical picture are 
so simple and universal, the NPBE may be successfully applied in many fields of physics. 
Examples are the system of point defects in an ionic crystal (Kliewer and Koehler 
1965), a system of electrons and holes in a non-degenerate semiconductor (Many et 
al 1965), some of the properties of polyelectrolytes (Lampert and Grandal 1980), some 
of the properties of a classical gaseous plasma (Balescu 1975) and some effects in 
biological systems (Melanglin et af 1971). 

It must be emphasised that the physical effects which are discussed here follow 
directly from the NPBE and the specific properties of its solutions. Accordingly it is 
to be expected that some of these physical effects will be realised in some of the above 
mentioned systems. 

The NPBE for a two-component Coulomb system consisting of equally charged 
particles has the form 

V2(I, = sinh (I, (1) 
where (I, = e p (  cp - cp,) is the reduced average electrostatic potential and cp is the 
self-consistent electrostatic potential with reference value (pa?; the Laplacian is taken 
using the scaled position coordinates ( X ,  Y, 2 )  = f ( x ,  y,  z) where f= ( 8 m , e ’ p / ~ ) ’ ’ ~  
is the inverse Debye length and (x, y ,  z) are unscaled position coordinates and p = 1/ kT. 
Here no is the average particle concentration, k is Boltzmann’s constant, T is the 
absolute temperature and E is the static dielectric constant of the medium. 

If (I, depends only on X then the first integral of equation (1) is 

(d(I,/dX)2 = 2 cosh ++ C 
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where C is the constant of integration. Martinov et a1 (1984) showed that when the 
system has a plane symmetry (in the Y and Z directions) equation (1) possesses the 
following three types of solutions. 

I For 

c > 2  $, = 2 tanh-l[sn(X/k’, k ) ]  (2) 
where k 2 = ( C - 2 ) / ( C + 2 ) ,  TX=4K(k)k’/f  and k’=(1-k2)1’2. 

I1 For 

2 2 c a - 2  $I, = 2 tanh-’[cn(X, k ) ]  (3) 
where here k2 = (2 - C)/4,  T, = 4K(k)/J: 

I11 For -2> C 

$ I l r  = 2 tanh-’[dn(X/k‘, k)] (4) 
where k 2  = 4/(2 - C), T, = 2K(k)k/f and k‘= (1 - k2)1’2. In these expressions 
sn(X, k), cn(X, k )  and dn(X, k) are the standard Jacobi elliptic functions and T, is 
the period of the periodic solutions displayed here. The functions K ( k )  are the 
complete elliptic integrals of the first kind. It can be seen from these equations and 
the properties of the relevant elliptic equations that in general these solutions are 
periodic in X. Only at C = -2 is the solution non-periodic, reducing then to the form 

$ = ln[coth2(X/2)] ( 5 )  

which is non-periodic. 
Solutions of the type given by equation ( 5 )  were used by Kliewer and Koehler 

(1965) and Many et a1 (1965) to describe the space-charge layer which occurs close 
to a charged surface of a ‘thick crystal’. Solutions of the form of equation (4) have 
been used in an investigation of the spatial distribution of Schottky defects in an ionic 
crystal (Kliewer 1965). The first application of solutions of the form of equations (2) 
and (3) was in the work of Georgiev et a1 (1980) and Martinov et a1 (1984). These 
solutions with their periodicity were used to predict periodic structures in the classical 
Coulomb lattice gas. 

That study met some particular problems associated with the fact that the solutions 
presented in equations (2)-(4) possess divergent singularities at those points at which 
the argument of the inverse hyperbolic tangent is equal to *l. For these solutions the 
singular points are 

(i) X=nK(k)k ’ ,  n = 0 ,  1, 2 , 3  , . . . ,  
(ii) X = ( 2 n + l ) K ( k ) ,  n = 0 ,  1,2,  3 , . . . a n d  
(iii) X = 2 n K ( k ) ,  n = 0 ,  1, 2 , 3  , . . . .  

In this context it is important to mention that the non-periodic solution in equation 
( 5 )  also possesses a singularity at the point X = 0. The presence of these singularities 
makes physical interpretation of the solutions more complicated. If the cross sectional 
area of the y ,  z plane involved in the sample is S, then the Boltzmann distribution 
inherent in the N P B E  shows that every period of the solutions contains 
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positive and negative particles. If we look at the solution of equation (3) we see the 
problem which now occurs in a simple form. Near X = O ,  the cn function may be 
approximated by 1 - aX for some a. We then have + =In X for X close to zero and 
so one of the integrals in (6) does not exist. We may also see a similar difficulty with 
solutions of the linearised NPBE (otherwise known as the Debye-Huckel approxima- 
tion). The solution of the linearised equation ( 1 )  is 

i,b = exp( - X )  (7) 
and this solution has a non-integrable solution at X = --CO. The non-integrability of 
these solutions appears to be inherent in the self-consistent Poisson-Boltzmann theory 
(and must, of course, be viewed as a defect of that theory). 

Usually such divergences are cancelled out by using a ‘cutoff’ procedure at the 
surface of a spherical particle or by imposing boundary conditions connected with the 
existence of a charged surface at x=O or at x=O and x = L ,  if we have a system 
bounded by two surfaces. These procedures remove the singularities from the region 
where equation ( 1 )  holds. Thus we use a part of the periodic solution and require 
that the function achieves the values +o and i,bL at x = 0 and x = L. This situation is 
illustrated in figure 1. The values of i,b0 and $L used here depend on the concrete 
physical problem. Such a procedure is quite normal in electrostatics; we quite happily 
change the solution to the Poisson equation when the boundary conditions change 
and we thereby avoid l / r  singularities in many solutions. In our case the problem is 
rather more delicate because we have a self-consistent equation. The potential created 
by the charged particles of the system is determined by the potentials on the charged 
surface or surfaces, but also contributes to those potentials. 

- 
Figure 1. Sketch graph of the potential in a system in which a particle core cutoff is used. 

The problem which arises when such a boundary condition procedure is used is 
that the total numbers of particles N ( + )  and N ( - )  per unit area of system change 
their values from the ones they have at + = 0, the case of homogeneous particle density. 
This result can be seen clearly by using equations (6) to give 

r L  

N ( + ) + N ( - ) = 2 n o J  cosh$dx32n0L (8) 
0 

where L is the size of the system in the x direction. We obtain an equality only when 
I) = 0. Thus we may conclude that any redistribution of the particles in the system is 
connected with a change in their total number. This effect is of course also to be seen 
with the linearised Poisson-Boltzmann equation, which implies an inequality similar 
to equation (8). 

When problems in solid state physics are analysed using the Poisson-Boltzmann 
theory, the analysis assumes that the surfaces are sinks or sources of charged particles 
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(Kliewer and Koehler 1965). An example is the formation and spatial distribution of 
Schottky defects in an ionic crystal. Another is the so called MOS (metal-oxide- 
semiconductor) structures, where the metal is a source of electrons (Many et a1 1965). 

The problem which we shall discuss here is how the particles are distributed in the 
system and what the boundary conditions must be if no sinks or sources exist. This 
is in fact the problem of self-organisation of a classical Coulomb system. As a first 
step we shall do this for a system with planar symmetry because in that case all the 
calculations can be performed analytically and estimates of the new effects can be 
obtained. The ideas presented here can also be applied in systems with lower symmetry 
using the solutions obtained in this case as a basis. Structures in more than one 
dimension are found (Martinov and Ouroushev 1986). 

In this analysis we restrict our attention to the NPBE. We shall show that the 
singularities in a solution of this equation can be interpreted as localised charges. 
These localised charges exhibit an inherent property of the self-consistent system under 
investigation and so must not be ignored. However, if we want to include these 
singularities in our analysis, we must first clarify the meaning of an infinite boundary 
condition. We should remember that such conditions do occur in ordinary electro- 
statics: the potentials of point charges, lines of charge and infinite charged planes 
contain infinite divergences. Further, in the original paper of Debye and Huckel(1923), 
the singularity in the solution obtained for the Poisson-Boltzmann equation is inter- 
preted as a central particle around which a screening cloud of charged particles is 
distributed. 

We assume now that we have a system of width L in the x direction. The average 
density of positive and negative particles is no. The cross sectional area of the system 
in the y z  plane is S. There are no sinks or sources of particles and consequently the 
numbers of positive and negative particles are N ( + )  = noLS and N ( - )  = noLS. We 
shall apply the NPBE to this system assuming that a redistribution of the particles 
occurs only in the x direction. We shall assume that the self-consistent potential in 
the system is given by one of the solutions ( 2 ) - ( 5 ) .  For the periodic solutions we shall 
assume that there are m periods in the system (with m = 1, 2, 3,.  . .). 

We include the singularities in our analysis and we shall give them a meaning. To 
clarify the idea we start with the case described by equation (4) and sketched in figure 
2.  In this case the singularities are at the points X=2nK(k)k ,  where the potential 
diverges to +W. These singularities are in fact integrable. The number of positive 

I 

Figure 2. Sketch of the potentials described by equation (4). 
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particles distributed spatially in one period is, from equations ( 4 )  and (6), 

N ( + )  = n o s  I,' exp{-2 tanh-'[dn(X/k, k ) ] }  dx. (9) 

The integral here may be evaluated to give 

N ( + )  = 2noS[ K (  k ) (  1 + k12) - 2 E (  k)]/ kf ( 1 0 )  

where now E ( k )  is the complete elliptic integral of the second kind. Since the period 
of the solution is T = 2 K ( k ) k / f ,  the total number of particles in one period of the 
solution is 

N h o m  = n O S ( 2 K ( k ) k / f ) *  ( 1 1 )  

Comparing equations (10) and ( 1  1 )  we see that 

N ( + )  < N h o m  

Thus the number of spatially distributed positive particles given by equation ( 9 )  is less 
than the total number of positive particles. We propose that the other positive particles 
must be seen as localised at the singularity points. There they form a charged surface 
with zero thickness. The surface charge density can be easily calculated if we assume 
that the surface charges are uniformly distributed on the singularity surfaces. This 
surface charge is given by 

Qloc= ( 4 n o e S / f ) [ E ( k )  - K(k)k"I/k. ( 1 2 )  

Equation ( 1 2 )  shows that in this case the amount of localised surface charge varies 
increasingly through the range 

0 s Qloc G 4noeS/  f ( 1 3 )  

as the period of the solution ( 4 )  varies from 0 to CO. 

Similar calculations can be performed using solutions ( 2 )  or ( 3 )  in place of ( 4 ) ,  
since those solutions have similar structure. The form of the potential over a part of 
the x axis is schematically plotted in figure 3.  The calculation of the number N ( + ;  A, B) 
of spatially distributed positive particles for the solution ( 2 )  in the first part of the 
period between the points A and B reduces after integration to 

N ( + ;  A, B) = 2 t 1 O { k " K ( k ) - 2 E ( k ) + 2 } / f k ' .  ( 1 4 )  

Figure 3. Sketch of the potentials described by equations (2) and (3) .  
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The next problem is to evaluate the corresponding integral in the second part of the 
period between the points B and C. The singularity here is not integrable. However, 
the number of spatially distributed positive particles may be evaluated using Gauss’s 
theorem. It must be emphasised here that the procedure we are about to perform is 
only possible in the non-linear problem for only there does a solution with finite period 
exist. The linearised problem does not admit such an analysis. We may conclude that 
investigation of self-organisation in classical Coulomb systems requires that the full 
non-linear equation be used. 

The symmetry of the potential in the interval A to C implies 

N ( + ;  A, B) = N (  -; B, C) (15 )  

where N (  -; B, C) is the number of spatially distributed negative particles in the interval 
B to C. 

Because we know that the electric field at B and C has the x-component value 

E = -f(2+ C)’ l ’ /pe  (16) 

we can calculate the total charge in the region BC easily using Gauss’s theorem. From 
equation (16), the total charge in the interval BC is then 

Q(B, C) = -fS(2+ C)’/*/27$e. 

N ( + ;  A, C)  =4noS(kf2K(k) -2E(k)}/fK~+2Ql,, /e 

(17) 

Using equations (15) and (17) we can then find 

(18) 

where Qloc is the negative surface charge localised on the plane at the point 0. The 
symmetry of the problem gives us reason to assume that the localised positive charge 
at the point 0’ has the same value and thus 

Qloc = 4n0eSE(k)/fk’. (19) 

When we use equation (3) for a solution, the total number of particles with one 
sign in a period is 

N (  + ; A, C)  = 4n0{K ( k )  - 2E ( k ) }  + 2Ql,,/ e. (20) 

Combining our results again we find that in this case the localised charge at the points 
0 or 0’ is 

Qioc = 4noeSE ( k )/.f (21) 

The value of the function E ( k )  varies between x / 2  and 1. 

(21) in (20) gives 
Since the localised positive charge is less than the total positive charge, substituting 

Qloc= 4noeSE(k)/fa4noeSK(k)/f= eN(+; A, C). (22) 

This inequality holds for all k > 0. At k = 0 we have an equality which means that all 
particles in the system are localised. This is an extremely interesting limiting case 
because it suggests that at k = 0 (or C = +2) a form of condensation occurs in the system. 

For the solution (2) a similar comparison can be made resulting in an inequality 
like that of equation (22), namely 

Q,,, = 4 n o S e E ( k ) / k ’ f Z 4 n , S e k ‘ K ( k ) / f =  noeSTx (23) 
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which uses the fact that the complete elliptic integrals obey the inequality E ( k )  3 
k ' * K ( k )  (Janke et al 1960). The inequality between Ql0, and noTx is the wrong way 
round. This implies that from the point of view used in this paper solutions of type 
( 2 )  do not have physical meaning. The inequality ( 2 3 )  would imply that the number 
of localised positive particles is larger than the total number of positive particles in 
the system. 

We have used the NPBE to describe some new self-organisation effects in classical 
Coulomb systems. The effects are not present in the linear form of this equation, which 
has to include a cutoff due to finite particle size. Such a procedure always means that 
the description of systems using the linearised Poisson-Boltzmann equation involves 
including particle sources and sinks in the description. This inclusion means that the 
total number of particles in the system changes as the boundary conditions change. 
This change occurs because the theoretical description is self-consistent. Within the 
NPBE we are able to describe systems with fixed particle number. The system then 
displays self-organisation effects which are connected with the use of infinite boundary 
conditions. Our interpretation of these infinite boundary conditions is that they 
correspond to the appearance of two-dimensional charge densities arranged on planes 
in the system. The solutions of class ( 3 )  which we discussed give periodically distributed 
localised charge layers with periods between 2 r / f  and CD. 
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